Add like
Add dislike
Add to saved papers

Gremlin-1 activates Akt/STAT3 signaling, which increases the glycolysis rate in breast cancer cells.

Gremlin-1 (GREM1), one of the antagonists of bone morphogenetic proteins (BMPs), has recently been reported to be overexpressed in a variety of cancers including breast cancer. GREM1 is involved in tumor promotion, but little is known about its role in the glycolysis of cancer cells. In this study, we investigated the role of GREM1 in glycolysis of breast cancer cells and its underlying molecular mechanisms. We first observed that glucose uptake and lactate production were increased in GREM1-overexpressing breast cancer cells. GREM1 increased the expression of hexokinase-2 (HK2), which catalyzes the phosphorylation of glucose, the first step in glycolysis. In addition, GREM1 activated STAT3 transcription factor through the ROS-Akt signaling pathway. The ROS-Akt-STAT3 axis activated by GREM1 was involved in promoting glucose uptake by increasing the expression of HK2 in breast cancer cells. Therefore, our study suggested a new mechanism by which GREM1 is involved in breast cancer promotion by increasing glycolysis in breast cancer cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app