Add like
Add dislike
Add to saved papers

Human Vestibulo-Ocular Reflex Adaptation Reduces when Training Demand Variability Increases.

One component of vestibular rehabilitation in patients with vestibulo-ocular reflex (VOR) hypofunction is gaze-stabilizing exercises that seek to increase (adapt) the VOR response. These prescribed home-based exercises are performed by the patient and thus their use/training is inherently variable. We sought to determine whether this variability affected VOR adaptation in ten healthy controls (× 2 training only) and ten patients with unilateral vestibular hypofunction (× 1 and × 2 training). During × 1 training, patients actively (self-generated, predictable) move their head sinusoidally while viewing a stationary fixation target; for × 2 training, they moved their outstretched hand anti-phase with their head rotation while attempting to view a handheld target. We defined the latter as manual × 2 training because the subject manually controls the target. In this study, head rotation frequency during training incrementally increased 0.5-2 Hz over 20 min. Active and passive (imposed, unpredictable) sinusoidal (1.3-Hz rotations) and head impulse VOR gains were measured before and after training. We show that for controls, manual × 2 training resulted in significant sinusoidal and impulse VOR adaptation of ~ 6 % and ~ 3 %, respectively, though this was ~two-thirds lower than increases after computer-controlled × 2 training (non-variable) reported in a prior study. In contrast, for patients, there was an increase in impulse but not sinusoidal VOR response after a single session of manual × 2 training. Patients had more than double the variability in VOR demand during manual × 2 training compared to controls, which could explain why adaptation was not significant in patients. Our data suggest that the clinical × 1 gaze-stabilizing exercise is a weak stimulus for VOR adaptation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app