Add like
Add dislike
Add to saved papers

Acylated 1 H -1,2,4-Triazol-5-amines Targeting Human Coagulation Factor XIIa and Thrombin: Conventional and Microscale Synthesis, Anticoagulant Properties, and Mechanism of Action.

We herein report the conventional and microscale parallel synthesis of selective inhibitors of human blood coagulation factor XIIa and thrombin exhibiting a 1,2,4-triazol-5-amine scaffold. Structural variations of this scaffold allowed identifying derivative 21i , a potent 29 nM inhibitor of FXIIa, with improved selectivity over other tested serine proteases and also finding compound 21m with 27 nM inhibitory activity toward thrombin. For the first time, acylated 1,2,4-triazol-5-amines were proved to have anticoagulant properties and the ability to affect thrombin- and cancer-cell-induced platelet aggregation. Performed mass spectrometric analysis and molecular modeling allowed us to discover previously unknown interactions between the synthesized inhibitors and the active site of FXIIa, which uncovered the mechanistic details of FXIIa inhibition. Synthesized compounds represent a promising starting point for the development of novel antithrombotic drugs or chemical tools for studying the role of FXIIa and thrombin in physiological and pathological processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app