Add like
Add dislike
Add to saved papers

Purification and biochemical characterization of an extracellular fructosyltransferase enzyme from Aspergillus niger sp. XOBP48: implication in fructooligosaccharide production.

3 Biotech 2020 October
An extracellular fructosyltransferase (Ftase) enzyme with a molar mass of ≈70 kDa from a newly isolated indigenous coprophilous fungus Aspergillus niger sp. XOBP48 is purified to homogeneity and characterized in this study. The enzyme was purified to 4.66-fold with a total yield of 15.53% and specific activity of 1219.17 U mg-1 of protein after a three-step procedure involving (NH4 )2 SO4 fractionation, dialysis and anion exchange chromatography. Ftase showed optimum activity at pH 6.0 and temperature 50 °C. Ftase exhibited over 80% residual activity at pH range of 4.0-10.0 and ≈90% residual activity at temperature range of 40-60 °C for 6 h. Metal ion inhibitors Hg2+ and Ag+ significantly inhibited Ftase activity at 1 mmol concentration. Ftase showed K m , v max and k cat values of 79.51 mmol, 45.04 µmol min-1 and 31.5 min-1 , respectively, with a catalytic efficiency ( k cat / K m ) of 396 µmol-1  min-1 for the substrate sucrose. HPLC-RI experiments identified the end products of fructosyltransferase activity as monomeric glucose, 1-kestose (GF2 ), and 1,1-kestotetraose (GF3 ). This study evaluates the feasibility of using this purified extracellular Ftase for the enzymatic synthesis of biofunctional fructooligosaccharides.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app