Add like
Add dislike
Add to saved papers

Phosphatidylinositol-specific phospholipase C enhances epidermal penetration by Staphylococcus aureus.

Scientific Reports 2020 October 21
Staphylococcus aureus (S. aureus) commonly colonizes the human skin and nostrils. However, it is also associated with a wide variety of diseases. S. aureus is frequently isolated from the skin of patients with atopic dermatitis (AD), and is linked to increased disease severity. S. aureus impairs the skin barrier and triggers inflammation through the secretion of various virulence factors. S. aureus secretes phosphatidylinositol-specific phospholipase C (PI-PLC), which hydrolyses phosphatidylinositol and cleaves glycosylphosphatidylinositol-anchored proteins. However, the role of S. aureus PI-PLC in the pathogenesis of skin diseases, including AD, remains unclear. In this study, we sought to determine the role of S. aureus PI-PLC in the pathogenesis of skin diseases. PI-PLC was observed to enhance the invasion and persistence of S. aureus in keratinocytes. Besides, PI-PLC promoted the penetration of S. aureus through the epidermal barrier in a mouse model of AD and the human organotypic epidermal equivalent. Furthermore, the loss of PI-PLC attenuated epidermal hyperplasia and the infiltration of Gr-1+ cells and CD4+ cells induced by S. aureus infection in the mouse model of AD. Collectively, these results indicate that PI-PLC eases the entry of S. aureus into the dermis and aggravates acanthosis and immune cell infiltration in infected skin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app