Add like
Add dislike
Add to saved papers

Cancer cell detection device for the diagnosis of bladder cancer from urine.

Bladder cancer is common and has one of the highest recurrence rates. Cystoscopy, the current gold standard diagnosis approach, has recently benefited from the introduction of blue light assisted photodynamic diagnostic (PDD). While blue light cystoscopy improves diagnostic sensitivity, it remains a costly and invasive approach. Here, we present a microfluidic-based platform for non-invasive diagnosis which combines the principle of PDD with whole cell immunocapture technology to detect bladder cancer cells shed in patient urine ex vivo. Initially, we demonstrate with model cell lines that our non-invasive approach achieves highly specific capture rates of bladder cancer cells based on their Epithelial Cell Adhesion Molecule expression (>90%) and detection by the intensity levels of Hexaminolevulinic Acid-induced Protoporphyrin IX fluorescence. Then, we show in a pilot study that the biosensor platform successfully discriminates histopathologically diagnosed cancer patients (n = 10) from non-cancer controls (n = 25). Our platform can support the development of a novel non-invasive diagnostic device for post treatment surveillance in patients with bladder cancer and cancer detection in patients with suspected bladder cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app