Add like
Add dislike
Add to saved papers

BDNF and JNK Signaling Modulate Cortical Interneuron and Perineuronal Net Development: Implications for Schizophrenia-Linked 16p11.2 Duplication Syndrome.

Schizophrenia Bulletin 2020 October 18
Schizophrenia (SZ) is a neurodevelopmental disorder caused by the interaction of genetic and environmental risk factors. One of the strongest genetic risk variants is duplication (DUP) of chr.16p11.2. SZ is characterized by cortical gamma-amino-butyric acid (GABA)ergic interneuron dysfunction and disruption to surrounding extracellular matrix structures, perineuronal nets (PNNs). Developmental maturation of GABAergic interneurons, and also the resulting closure of the critical period of cortical plasticity, is regulated by brain-derived neurotrophic factor (BDNF), although the mechanisms involved are unknown. Here, we show that BDNF promotes GABAergic interneuron and PNN maturation through JNK signaling. In mice reproducing the 16p11.2 DUP, where the JNK upstream activator Taok2 is overexpressed, we find that JNK is overactive and there are developmental abnormalities in PNNs, which persist into adulthood. Prefrontal cortex parvalbumin (PVB) expression is reduced, while PNN intensity is increased. Additionally, we report a unique role for TAOK2 signaling in the regulation of PVB interneurons. Our work implicates TAOK2-JNK signaling in cortical interneuron and PNN development, and in the responses to BDNF. It also demonstrates that over-activation of this pathway in conditions associated with SZ risk causes long-lasting disruption in cortical interneurons.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app