JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Reinfection with SARS-CoV-2: Discrete SIR (Susceptible, Infected, Recovered) Modeling Using Empirical Infection Data.

BACKGROUND: The novel coronavirus SARS-CoV-2, which causes the COVID-19 disease, has resulted in a global pandemic. Since its emergence in December 2019, the virus has infected millions of people, caused the deaths of hundreds of thousands, and resulted in incalculable social and economic damage. Understanding the infectivity and transmission dynamics of the virus is essential to determine how best to reduce mortality while ensuring minimal social restrictions on the lives of the general population. Anecdotal evidence is available, but detailed studies have not yet revealed whether infection with the virus results in immunity.

OBJECTIVE: The objective of this study was to use mathematical modeling to investigate the reinfection frequency of COVID-19.

METHODS: We have used the SIR (Susceptible, Infected, Recovered) framework and random processing based on empirical SARS-CoV-2 infection and fatality data from different regions to calculate the number of reinfections that would be expected to occur if no immunity to the disease occurred.

RESULTS: Our model predicts that cases of reinfection should have been observed by now if primary SARS-CoV-2 infection did not protect individuals from subsequent exposure in the short term; however, no such cases have been documented.

CONCLUSIONS: This work concludes that infection with SARS-CoV-2 provides short-term immunity to reinfection and therefore offers useful insight for serological testing strategies, lockdown easing, and vaccine development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app