JOURNAL ARTICLE

Evolutionary Analysis of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Reveals Genomic Divergence with Implications for Universal Vaccine Efficacy

Nanda Kumar Yellapu, Shachi Patel, Bo Zhang, Richard Meier, Lisa Neums, Dong Pei, Qing Xia, Duncan Rotich, Rosalyn C Zimmermann, Emily Nissen, Shelby Bell-Glenn, Whitney Shae, Jinxiang Hu, Prabhakar Chalise, Lynn Chollet-Hinton, Devin C Koestler, Jeffery A Thompson
Vaccines 2020 October 8, 8 (4)
33050053
Coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is one of the pressing contemporary public health challenges. Investigations into the genomic structure of SARS-CoV-2 may inform ongoing vaccine development efforts and/or provide insights into vaccine efficacy to fight against COVID-19. Evolutionary analysis of 540 genomes spanning 20 different countries/territories was conducted and revealed an increase in the genomic divergence across successive generations. The ancestor of the phylogeny was found to be the isolate from the 2019/2020 Wuhan outbreak. Its transmission was outlined across 20 countries/territories as per genomic similarity. Our results demonstrate faster evolving variations in the genomic structure of SARS-CoV-2 when compared to the isolates from early stages of the pandemic. Genomic alterations were predominantly located and mapped onto the reported vaccine candidates of structural genes, which are the main targets for vaccine candidates. S protein showed 34, N protein 25, E protein 2, and M protein 3 amino acid variations in 246 genomes among 540. Among identified mutations, 23 in S protein, 1 in E, 2 from M, and 7 from N protein were mapped with the reported vaccine candidates explaining the possible implications on universal vaccines. Hence, potential target regions for vaccines would be ideally chosen from the structural regions of the genome that lack high variation. The increasing variations in the genome of SARS-CoV-2 together with our observations in structural genes have important implications for the efficacy of a successful universal vaccine against SARS-CoV-2.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
33050053
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"