Add like
Add dislike
Add to saved papers

Co-fermentation of glycerol and glucose by a co-culture system of engineered Escherichia coli strains for 1,3-propanediol production without vitamin B 12 supplementation.

The necessity of costly co-enzyme B12 for the activity of glycerol dehydratase (GDHt) is considered as a major bottleneck in sustainable bioproduction of 1,3-propanediol (1,3-PD) from glycerol. Here, an E. coil Rosetta-dhaB1-dhaB2 strain was constructed by overexpressing a B12 -independent GDHt (dhaB1) and its activating factor (dhaB2) from Clostridium butyricum. Subsequently, it was used in designing a co-culture with E. coli BL21-dhaT that overexpressed 1,3-PD oxidoreductase (dhaT), to produce 1,3-PD during co-fermentation of glycerol and glucose. The optimum initial ratio of BL21-dhaT to Rosetta-dhaB1-dhaB2 strains in the co-culture was 1.5. Compared to the fermentation of glycerol alone, co-fermentation approach provided 1.3-folds higher 1,3-PD. Finally, co-fermentation was done in a 10 L bioreactor that produced 41.65 g/L 1,3-PD, which corresponded to 0.69 g/L/h productivity and 0.67 mol/mol yield of 1,3-PD. Hence, the developed co-culture could produce 1,3-PD cost-effectively without requiring vitamin B12 .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app