[Comparison study of whole exome sequencing and targeted panel sequencing in molecular diagnosis of inherited retinal dystrophies]

X Z Liu, Y Y Li, L P Yang
Beijing da Xue Xue Bao. Yi Xue Ban, Journal of Peking University. Health Sciences 2020 October 18, 52 (5): 836-844

OBJECTIVE: To evaluate and compare whole exome sequencing (WES) and targeted panel sequencing in the clinical molecular diagnosis of the Chinese families affected with inherited retinal dystrophies (IRDs).

METHODS: The clinical information of 182 probands affected with IRDs was collected, including their family history and the ophthalmic examination results. Blood samples of all probands and their relatives were collected and genomic DNA was extracted by standard protocols. The first 91 cases were subjected to the WES and the other 91 cases were subjected to a specific hereditary eye disease enrichment panel (HEDEP) designed by us. All likely pathogenic and pathogenic variants in the candidate genes were determined by Sanger sequencing and co-segregation analyses were performed in available family members. Copy number variations (CNVs) detected by HEDEP were further validated by multiplex ligation-dependent probe amplification (MLPA). As PRGR ORF15 was difficult to capture by next generation sequencing (NGS), all the samples were subjected to Sanger sequencing for this region. All sequence changes identified by NGS were classified according to the American College of Medical Gene-tics and Genomics and the Association for Molecular Pathology (ACMG/AMP) variant interpretation guidelines. In this study, only variants identified as pathogenic or likely pathogenic were included, while those variants of uncertain significance, likely benign or benign were not included.

RESULTS: In 91 cases with WES, pathogenic or likely pathogenic variants were determined in 30 cases, obtaining a detection rate of 33.00% (30/91); While in 91 cases with HEDEP sequencing, pathogenic or likely pathogenic variants were determined in 51 cases, achieving the diagnostic rate of 56.04% (51/91), and totally, the diagnostic rate was 44.51%. HEDEP had better sequencing coverage and read depth than WES, therefore HEDEP had higher detection rate. In addition, HEDEP could detect CNVs. In this study, we detected disease-causing variants in 29 distinct IRD-associated genes, USH2A , ABCA4 and RPGR were the three most common disease-causing genes, and the frequency of these genes in Chinese IRDs population was 11.54% (21/182), 6.59% (12/182) and 3.85% (7/182), respectively. We found 43 novel variants and 6 cases carried variants in RPGR ORF15.

CONCLUSION: NGS in conjunction with Sanger sequencing offers a reliable and effective approach for the genetic diagnosis of IRDs, and after evaluating the pros and cons of the two sequencing methods, we conclude that HEDEP should be used as a first-tier test for IRDs patients, WES can be used as a supplementary molecular diagnostic method due to its merit of detecting novel IRD-associated genes if HEDEP or other methods could not detect disease-causing va-riants in reported genes. In addition, our results enriched the mutational spectra of IRDs genes, and our methods paves the way of genetic counselling, family planning and up-coming gene-based therapies for these families.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"