JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Brain-homing CD4 + T cells display glucocorticoid-resistant features in MS.

OBJECTIVE: To study whether glucocorticoid (GC) resistance delineates disease-relevant T helper (Th) subsets that home to the CNS of patients with early MS.

METHODS: The expression of key determinants of GC sensitivity, multidrug resistance protein 1 (MDR1/ ABCB1 ) and glucocorticoid receptor (GR/ NR3C1 ), was investigated in proinflammatory Th subsets and compared between natalizumab-treated patients with MS and healthy individuals. Blood, CSF, and brain compartments from patients with MS were assessed for the recruitment of GC-resistant Th subsets using fluorescence-activated cell sorting (FACS), quantitative polymerase chain reaction (qPCR), immunohistochemistry, and immunofluorescence.

RESULTS: An MS-associated Th subset termed Th17.1 showed a distinct GC-resistant phenotype as reflected by high MDR1 and low GR expression. This expression ratio was further elevated in Th17.1 cells that accumulated in the blood of patients with MS treated with natalizumab, a drug that prevents their entry into the CNS. Proinflammatory markers C-C chemokine receptor 6, IL-23R, IFN-γ, and GM-CSF were increased in MDR1-expressing Th17.1 cells. This subset predominated the CSF of patients with early MS, which was not seen in the paired blood or in the CSF from patients with other inflammatory and noninflammatory neurologic disorders. The potential of MDR1-expressing Th17.1 cells to infiltrate brain tissue was confirmed by their presence in MS white matter lesions.

CONCLUSION: This study reveals that GC resistance coincides with preferential CNS recruitment of pathogenic Th17.1 cells, which may hamper the long-term efficacy of GCs in early MS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app