Add like
Add dislike
Add to saved papers

Cognitive Training as a Potential Activator of Hippocampal Neurogenesis in the Rat Model of Sporadic Alzheimer's Disease.

There is a growing body of evidence that interventions like cognitive training or exercises prior to the manifestation of Alzheimer's disease (AD) symptoms may decelerate cognitive decline. Nonetheless, evidence of prevention or a delay of dementia is still insufficient. Using OXYS rats as a suitable model of sporadic AD and Wistar rats as a control, we examined effects of cognitive training in the Morris water maze on neurogenesis in the dentate gyrus in presymptomatic (young rats) and symptomatic (adult rats) periods of development of AD signs. Four weeks after the cognitive training, we immunohistochemically estimated densities of quiescent and amplifying neuronal progenitors, neuronal-lineage cells (neuroblasts and immature and mature neurons), and astrocytes in young and adult rats, and the amyloid precursor protein and amyloid-β in adult rats. Reference memory was defective in OXYS rats. The cognitive training did not affect neuronal-lineage cells' density in either rat strain either at the young or adult age, but activated neuronal progenitors in young rats and increased astrocyte density and downregulated amyloid-β in adult OXYS rats. Thus, to activate adult neurogenesis, cognitive training should be started before first neurodegenerative changes, whereas cognitive training accompanying amyloid-β accumulation affects only astrocytic support.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app