JOURNAL ARTICLE

Growth Factors and Small-molecule Compounds in Derivation of Endothelial Lineages from Dental Stem Cells

Baicheng Yi, Waruna Lakmal Dissanayaka, Chengfei Zhang
Journal of Endodontics 2020, 46 (9S): S63-S70
32950197

INTRODUCTION: Incorporating fully assembled microvascular networks into bioengineered dental pulp constructs can significantly enhance functional blood flow and tissue survival upon transplantation. Endothelial cells (ECs), cellular building blocks of vascular tissue, play an essential role in the process of prevascularization. However, obtaining sufficient ECs from a suitable source for translational application is challenging. Dental stem cells (DSCs), which exhibit a robust proliferative ability and immunocompatibility because of their autologous origin, could be a promising alternative cell source for the derivation of endothelial lineages. Under specific culture conditions, DSCs differentiate into osteo/odontogenic, adipogenic, chondrogenic, and neurogenic cell lineages.

METHODS: Recently, a new approach has been developed to directly reprogram cells using chemical cocktails and growth factors. Compared with the traditional reprogramming approach based on the forced expression of exogenous transcription factors, the chemical strategy avoids the risk associated with lentiviral transduction while offering a more viable methodology to drive cell lineage switch. The aim of this review was to unveil the concept of the use of small-molecule compounds and growth factors modulating key signaling pathways to derive ECs from DSCs.

RESULTS: In addition, our preliminary study showed that stem cells from the apical papilla could be induced into EC-like cells using small-molecule compounds and growth factors. These EC-like cells expressed endothelial specific genes (CD31 and VEGFR2) and proteins (CD31, VEGF receptor 2, and vascular endothelial cadherin) as well as gave rise to vessel-like tubular structures in vitro.

CONCLUSIONS: Our preliminary results suggest that chemical reprogramming might offer a novel way to generate EC-like cells from dental stem cells.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read
32950197
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"