Add like
Add dislike
Add to saved papers

Characterizing dynamics of serum creatinine and creatinine clearance in extremely low birth weight neonates during the first 6 weeks of life.

Pediatric Nephrology 2020 September 18
BACKGROUND: Characterizing the dynamics of serum creatinine concentrations (Scr) and associated creatinine clearance (CLcr) as a measure of kidney function in extremely low birth weight (≤ 1000 g; ELBW) neonates remains challenging.

METHODS: We performed a retrospective study that included longitudinal Scr (enzymatic assay) data from 148 ELBW neonates up to 6 weeks after birth. Change of Scr and inter-individual variability was characterized with nonlinear mixed-effect modeling. Key covariates such as gestational age (GA), mode of delivery (MOD), and treatment with ibuprofen or inotropic agents were investigated.

RESULTS: A total of 2814 Scr concentrations were analyzed. GA was associated with Scr at birth (higher with advancing GA), and GA and MOD showed an association with postnatal maturation of CLcr (faster clearance increase with advancing GA and after C-section). Small CLcr decrease (≤ 5%) was quantified during ibuprofen treatment. For a GA of 27 weeks, mean Scr (estimated CLcr) at birth was 0.61 mg/dl (0.23 ml/min), increasing to 0.87 mg/dl (0.27 ml/min) at day three, and decreasing to 0.36 mg/dl (0.67 ml/min) at day 42 after birth.

CONCLUSIONS: We report the first mathematical model able to characterize Scr and CLcr in ELBW neonates during the first 6 weeks of life in a quantitative manner as a function of GA, MOD, and ibuprofen treatment. This model allows the derivation of GA-adjusted reference ranges for ELBW neonates and provides a rationale for normative Scr concentrations, and as such will help clinicians to further optimize monitoring and treatment decisions in this vulnerable patient population.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app