Journal Article
Review
Add like
Add dislike
Add to saved papers

The use of ultrasound to assess aortic biomechanics: Implications for aneurysm and dissection.

Echocardiography 2020 September 16
Arterial stiffening, which occurs when conduit arteries thicken and lose elasticity, has been associated with cardiovascular disease and increased risk for future cardiovascular events. Specifically, aortic stiffening plays a large role in the pathogenesis of vascular diseases, such as aneurysm formation and dissection. Current parameters used to assess risk of aortic rupture include absolute diameter and growth rate. However, these properties lack the reliability required to accurately risk-stratify patients. As with any elastic conduit, it is important to assess the biomechanical properties of the aorta in order to assess cardiovascular risk and prevent disease progression. There are several invasive and noninvasive methods by which stiffness of the large arteries can be assessed. Of particular interest are ultrasound-based methods, such as tissue Doppler imaging and speckle-tracking echocardiography, due to their noninvasive and feasible nature. In this review, we summarize studies demonstrating utility of noninvasive ultrasound imaging methods for measuring aortic biomechanics for the assessment and management of aortic aneurysms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app