Add like
Add dislike
Add to saved papers

Hinokitiol induces cell death and inhibits epidermal growth factor-induced cell migration and signaling pathways in human cervical adenocarcinoma.

OBJECTIVE: The aim of this study was to examine the antitumor activity of hinokitiol for its clinical application in the treatment of human cervical carcinoma.

MATERIALS AND METHODS: Cervical carcinoma HeLa cells were treated by different concentrations of hinokitiol. Flow cytometry was used to analyze cell cycle. Senescence-associated β-galactosidase (SA-β-gal) assay was used to identify senescent cells. The effects of hinokitiol on EGF-induced cell migration were determined by wound healing and transwell migration assays. Western blot was used to detect proteins involved in cell cycle progression, apoptosis, autophagy, and EGF-induced signaling pathways.

RESULTS: Hinokitiol suppressed cell viability in a dose-dependent manner. Flow cytometric analysis indicated that hinokitiol treatment resulted in cell cycle arrest at G1 phase, with reduced number of cells in the G2/M phase. Western blot analysis further demonstrated that hinokitiol treatment increased the levels of p53 and p21, and concomitantly reduced the expression of cell cycle regulatory proteins, including cyclin D and cyclin E. SA-β-gal assay showed that hinokitiol treatment significantly induced β-galactosidase activity. In addition, treatment with hinokitiol increased the accumulation of the autophagy regulators, beclin 1 and microtubule-associated protein 1 light chain 3 (LC3-II), in a dose-dependent manner; however, it did not induce caspase-3 activation and poly ADP ribose polymerase (PARP) cleavage. In addition, epidermal growth factor-induced cell migration and c-Jun N-terminal kinase (JNK) and focal adhesion kinase (FAK) phosphorylation were significantly inhibited by hinokitiol.

CONCLUSION: Our findings revealed that hinokitiol might serve as a potential therapeutic agent for cervical carcinoma therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app