Add like
Add dislike
Add to saved papers

Stepwise Load Reduction Training: A New Training Concept for Skeletal Muscle and Energy Systems.

Sports Medicine 2020 December
An increased ability to supply energy to skeletal muscle is expected to contribute to greater athletic performance, and therefore, a variety of training methods are used for improving these energy supply systems. These methods are classified into two broad categories: a bout of continuous exercise at a given load/intensity and intermittent bouts of exercise at a given load/intensity with recovery intervals. Interestingly, recent work suggests that a training method which starts at a high load/intensity and gradually decreases the exercise load/intensity within a given training set (stepwise load reduction training) may provide a range of adaptations. In resistance training, the load starts off high and is then reduced as the set continues which is expected to simultaneously increase muscle strength, endurance, and size. In training focused on aerobic and anaerobic metabolic systems, intensity starts off high and is then reduced as the exercise continues which is expected to simultaneously increase maximal anaerobic power, anaerobic capacity, and aerobic capacity. Because stepwise load reduction training has no recovery intervals between each load/intensity, the training effects are achieved within a short time per session (several minutes). However, only minimal evidence exists to support the effects of stepwise load reduction training; therefore, further studies with larger samples are needed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app