Add like
Add dislike
Add to saved papers

Identification of a Novel Arginine Vasopressin Receptor 2 Mutation (p.V183M) in a Chinese Family with Nephrogenic Diabetes Insipidus.

Loss of function of arginine vasopressin receptor 2 (AVPR2) may affect the recognition and binding of arginine vasopressin (AVP) which, in turn, may prevent the activation of Gs/adenylate cyclase and reduce the reabsorption of water by renal tubules and combined tubes. Finally, the organism may suffer from nephrogenic diabetes insipidus (NDI), a kind of kidney disorder featured by polyuria and polydipsia, due to a break of water homeostasis. In this study, we enrolled a Chinese family with polyuria and polydipsia. The proband presented abnormal fluid intake and excessive urine output. A water deprivation and AVP stimulation test further indicated that this patient had NDI. By sequencing known causative genes for diabetes insipidus, we identified a novel mutation in AVPR2 (c.547G>A; p.V183M) in the family. This mutation, located in a conserved site of AVPR2 and predicted to be disease-causing by informatics programs, was absent in our 200 controls and other public databases. Our study not only further confirms the clinical diagnosis, but also expands the spectrum of AVPR2 mutations and contributes to genetic diagnosis and counseling of patients with NDI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app