Add like
Add dislike
Add to saved papers

Beta amyloid-induced time-dependent learning and memory impairment: involvement of HPA axis dysfunction.

Aβ aggregation is one of the pathological biomarkers of Alzheimer's disease (AD). However, the possible mechanism related to Aβ-induced pathological signaling pathway is still unknown. In the present study, Aβ1-42-induced time-dependent memory impairment and its possible relationship to hypothalamic-pituitary-adrenal (HPA) axis hyperactivity were examined. Aβ1-42-treated mice significantly impaired acquisition activity in the learning curve at 10 days, 1 and 4 months in the Morris water-maze (MWM) task. This learning activity was back to normal at 8 months after Aβ1-42 treatment. In the probe trial test, Aβ1-42-treated mice needed longer latencies to touch the precious platform location and fewer numbers of crossing from 10 days to 4 months after microinjection. This Aβ1-42 induced memory loss was consistent with the results of the step-down passive avoidance test. The HPA axis related parameters, such as corticosterone (CORT) level in the serum, glucocorticoid receptor (GR) and corticotropin-releasing factor receptor (CRF-R) expression in the frontal cortex and hippocampus increased in Aβ1-42-treated mice from 10 days to 4 months. While the downstream molecules phosphorylation of cyclic AMP response element binding (pCREB) and brain-derived neurotrophic factor (BDNF) expression decreased during this time. These effects were back to normal 8 months after treatment with Aβ1-42. Altogether, our results suggested that Aβ1-42 induced significant learning and memory impairment, which is involved in HPA axis dysfunction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app