COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Respiratory physiology of COVID-19-induced respiratory failure compared to ARDS of other etiologies.

BACKGROUND: Whether respiratory physiology of COVID-19-induced respiratory failure is different from acute respiratory distress syndrome (ARDS) of other etiologies is unclear. We conducted a single-center study to describe respiratory mechanics and response to positive end-expiratory pressure (PEEP) in COVID-19 ARDS and to compare COVID-19 patients to matched-control subjects with ARDS from other causes.

METHODS: Thirty consecutive COVID-19 patients admitted to an intensive care unit in Rome, Italy, and fulfilling moderate-to-severe ARDS criteria were enrolled within 24 h from endotracheal intubation. Gas exchange, respiratory mechanics, and ventilatory ratio were measured at PEEP of 15 and 5 cmH2 O. A single-breath derecruitment maneuver was performed to assess recruitability. After 1:1 matching based on PaO2 /FiO2 , FiO2 , PEEP, and tidal volume, COVID-19 patients were compared to subjects affected by ARDS of other etiologies who underwent the same procedures in a previous study.

RESULTS: Thirty COVID-19 patients were successfully matched with 30 ARDS from other etiologies. At low PEEP, median [25th-75th percentiles] PaO2 /FiO2 in the two groups was 119 mmHg [101-142] and 116 mmHg [87-154]. Average compliance (41 ml/cmH2 O [32-52] vs. 36 ml/cmH2 O [27-42], p = 0.045) and ventilatory ratio (2.1 [1.7-2.3] vs. 1.6 [1.4-2.1], p = 0.032) were slightly higher in COVID-19 patients. Inter-individual variability (ratio of standard deviation to mean) of compliance was 36% in COVID-19 patients and 31% in other ARDS. In COVID-19 patients, PaO2 /FiO2 was linearly correlated with respiratory system compliance (r = 0.52 p = 0.003). High PEEP improved PaO2 /FiO2 in both cohorts, but more remarkably in COVID-19 patients (p = 0.005). Recruitability was not different between cohorts (p = 0.39) and was highly inter-individually variable (72% in COVID-19 patients and 64% in ARDS from other causes). In COVID-19 patients, recruitability was independent from oxygenation and respiratory mechanics changes due to PEEP.

CONCLUSIONS: Early after establishment of mechanical ventilation, COVID-19 patients follow ARDS physiology, with compliance reduction related to the degree of hypoxemia, and inter-individually variable respiratory mechanics and recruitability. Physiological differences between ARDS from COVID-19 and other causes appear small.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app