Add like
Add dislike
Add to saved papers

On the instability of the giant direct magnetocaloric effect in CoMn 0.915 Fe 0.085 Ge at. % metamagnetic compounds.

Scientific Reports 2020 August 27
The giant magnetocaloric effect was quantified in CoMn1-x Fex Ge (x = 0.085-0.12) nom. at. % polycrystals across the high temperature hexagonal (P63 /mmc) to low temperature orthorhombic (Pnma) phase transition via differential scanning calorimetry (DSC) and multiple (thermo) magnetization measurements. It was found that increasing Fe content led to the decrease of both the martensitic transformation temperature and entropy change ([Formula: see text]) at the point of the phase transition. Moreover, first-time magnetocaloric measurements resulted in irreproducible entropy change versus temperature diagrams, which was attributed to the release of internal pressure in bulk samples that disintegrated into powder upon transformation. CoMn1-x Fex Ge demonstrated larger magnetic field-induced entropy changes and giant magnetocaloric effect (MCE) compared to other CoMnGe alloys doped with Si, Sn, Ti, and Ga. However, the observed brittleness and apparent change in volume at the magnetic transition was posited to influence the material's potential for regenerative applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app