Add like
Add dislike
Add to saved papers

AntagomiR-29b inhibits vascular and valvular calcification and improves heart function in rats.

We aimed to investigate the role of the miR-29b and its effect on TGF-β3 pathway in vascular and valvular calcification in a rat model of calcific aortic valve diseases (CAVD). A rat model of CAVD was established by administration of warfarin plus vitamin K. The expression levels of miR-29b, osteogenic markers and other genes were determined by qRT-PCR, Western blot and/or immunofluorescence and immunohistochemistry. The calcium content and alkaline phosphatase (ALP) activity were measured. The calcium content, ALP activity and osteogenic markers levels in calcified aorta and aortic valve were augmented compared to controls. The expression of miR-29b, p-Smad3, and Wnt3 and β-catenin was significantly up-regulated, whereas TGF-β3 was markedly down-regulated. However, compared with the CAVD model group, the calcium content and ALP activity in rats treated with antagomiR-29b were significantly decreased, and antagomiR-29b administration reversed the effects of CAVD model on the expression of miR-29b and osteogenic markers. Inhibition of miR-29b in CAVD rats prevented from vascular and valvular calcification and induced TGF-β3 expression, suggesting that the miR-29b/TGF-β3 axis may play a regulatory role in the pathogenesis of vascular and valvular calcification and could play a significant role in the treatment of CAVD and other cardiovascular diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app