Add like
Add dislike
Add to saved papers

Altered cortical functional network in drug-naive adult male patients with attention-deficit hyperactivity disorder: A resting-state electroencephalographic study.

Relatively little is known about the neurophysiology of adult Attention-deficit/hyperactivity disorder (ADHD). Brain network analysis can yield important insights into the neuropathology in adult ADHD. The objective of this study was to investigate source-level cortical functional network using resting-state electroencephalography (EEG) in drug-naive adult patients with ADHD. Resting-state EEG was performed for 30 adult male patients with ADHD and 27 male healthy controls. Source-level weighted functional networks based on graph theory were evaluated, including strength, clustering coefficient (CC) and path length (PL) in six frequency bands. At the global level, strength (η2  = 0.167) and CC (η2  = 0.156) were lower while PL (η2  = 0.159) was higher for the high beta band in the ADHD patient group compared to healthy controls. At the nodal level, CCs of the high beta band were lower in the left middle temporal gyrus (η2  = 0.244), right inferior occipital cortex (η2  = 0.214), right posterior transverse collateral sulcus (η2  = 0.237), and right anterior occipital sulcus (η2  = 0.251) for the adult ADHD group. Furthermore, the nodal-level high beta band CCs of the left middle temporal gyrus and right anterior occipital sulcus were significantly negatively correlated with ADHD symptoms. The altered cortical functional network showed inefficient connectivity in the left middle temporal gyrus, belonging to the default mode network, the right inferior occipital cortex, belonging to the extrastriate visual resting state network, the right posterior transverse collateral sulcus, belonging to the visual network, and the anterior occipital sulcus, reflecting visual attention, which might affect the pathophysiology of ADHD. Taken together, these attenuated network inefficiencies in adult patients with ADHD may lead to suboptimal information processing and affect symptoms of ADHD, such as inattention and hyperactivity. Our findings should be further replicated using longitudinal study designs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app