Add like
Add dislike
Add to saved papers

Abnormalities in hemispheric lateralization of intra- and inter-hemispheric white matter connections in schizophrenia.

Hemispheric lateralization is a prominent feature of the human brain and is grounded into intra- and inter-hemispheric white matter (WM) connections. However, disruptions in hemispheric lateralization involving both intra- and inter-hemispheric WM connections in schizophrenia is still unclear. Hence, a quantitative measure of the hemispheric lateralization of intra- and inter-hemispheric WM connections could provide new insights into schizophrenia. This work performed diffusion tensor imaging on 50 patients and 58 matched healthy controls. Using graph theory, the global and nodal efficiencies were computed for both intra- and inter-hemispheric networks. We found that patients with schizophrenia showed significantly decrease in both global and nodal efficiency of hemispheric networks relative to healthy controls. Specially, deficits in intra-hemispheric integration and inter-hemispheric communication were revealed in frontal and temporal regions for schizophrenia. We also found disrupted hemispheric asymmetries in brain regions associated with emotion, memory, and visual processes for schizophrenia. Moreover, abnormal hemispheric asymmetry of nodal efficiency was significantly correlated with the symptom of the patients. Our finding indicated that the hemispheric WM lateralization of intra- and inter-hemispheric connections could serve as a potential imaging biomarker for schizophrenia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app