Add like
Add dislike
Add to saved papers

Use of routine computed tomography scans for detecting osteoporosis in thoracolumbar vertebral bodies.

Skeletal Radiology 2021 Februrary
OBJECTIVE: This study observed the distribution of CT attenuation values for T10-L3 vertebral bodies and derived the Hounsfield unit (HU) thresholds using the quantitative computed tomography (QCT) as a reference to predict osteoporosis and normal bone density.

METHODS: We included 482 subjects who were scheduled to undergo CT lung cancer screening and pulmonary nodule follow-up from May 2015 to February 2019. The subjects were scanned with the calibration phantom beneath the back while performing a chest CT scan. The volumetric bone mineral density (vBMD) and CT attenuation values of T10-L3 vertebral bodies were measured, and the correlation between the two measurements was analyzed. Receiver operator characteristic (ROC) curves were generated to determine diagnostic optimal thresholds.

RESULTS: A total of 2716 vertebral bodies of 457 participants were measured after exclusion screening. CT attenuation value of each plane's vertebral body showed a strong correlation with vBMD. The optimal threshold of > 141 HU was 93.5% sensitive and 86.1% specific for the recognition of normal BMD. The optimal threshold of < 102.4 HU was 96.9% specific and 82.1% sensitive for distinguishing osteoporosis from osteopenia and normal BMD. The average CT attenuation values of vertebral bodies with compressed and normal morphology were 108.9 ± 20.6 and 136.8 ± 32.2 HU, respectively.

CONCLUSION: Sagittal reconstruction of the thoracic vertebrae using routine thoracic CT image combined with CT attenuation value measurements of the spine is valuable for predicting bone mineral density in high-risk populations. The mean CT attenuation values of the vertebral bodies with vertebral compression appearance were lower than that of normal vertebral shape.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app