Add like
Add dislike
Add to saved papers

Improvement in Cardiac Function of Ovariectomized Rats by Antioxidant Tempol.

A rise in heart disease incidence in women after menopause has led to investigations into the role of female sex hormones on cardiac function. Although various adverse changes in cardiac contractile function following loss of female sex hormones have been reported, a clear mechanism of action has never been characterized. In order to examine whether an elevation in oxidative stress is a major cause of cardiac contractile dysfunction after female sex hormone deprivation, cardiac functions of ovariectomized rats with and without supplementation of superoxide scavenger tempol were compared to those of sham-operated controls. Chronic deprivation of female sex hormones reduced total oxidative capacity and increased plasma carbonyl protein content. Tempol supplementation of ovariectomized rats significantly ameliorated plasma oxidative stress status. Echocardiography demonstrated a significant decrease in left ventricular ejection fraction in ovariectomized rats, which was completely prevented by tempol supplementation. Decreased myocardial contractility occurs with reduced maximum myofilament force of contraction and amplitude of transient intracellular Ca2+ concentration, both phenomena completely attenuated by tempol supplementation. However, tempol only partially prevented shift of heart myosin heavy chain from dominant α-to β-isoform of ovariectomized rats. Immunoblot analysis of protein carbonylation indicated that tempol supplementation significantly reduced the level of cardiac myofibrillar proteins oxidation increased in ovariectomized rat heart. Taken together, the results indicate changes of cardiac contractile machinery following loss of female sex hormones were, in part, due to an increase in oxidative stress, and antioxidant supplementation could be considered another potential prevention measure in postmenopausal women.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app