Add like
Add dislike
Add to saved papers

Wrinkle-induced tear in the mitral valve leaflet tissue: a computational model.

In this study, we offer a numerical platform to detect the locations of high-stress zones in the prosthetic heart valve, in the mitral position, during the closing phase due to existing wrinkles. The intended prosthetic valves in this study have the same shape as the native mitral valve but made of synthetic biomaterials. We assume the most high-risk locations for ruptures to either initiate or propagate are at the base of existing wrinkles. We developed a finite element model for the human mitral valve. A mesh model was effectively created to account for the uneven stress distribution and high-stress concentration zones in the valve tissue structure. The constitutive material model used in this study is anisotropic and hyperelastic such that the membrane elements are used for the leaflets and spar elements are utilised for the mitral valve cords for which it was assumed flexural stiffness is insignificant for both sets of elements. We developed a novel and effective computational model for the simulation of wrinkles in the valve leaflet during the closing phase. The proposed numerical model provided a quick but precise assessment for the detection of locations of rips and tears on the leaflet tissue during the closing phase. The proposed model is an essential step for the design of material and geometry of leaflets of prosthetic heart valves made of polymers or tissue materials in the mitral position.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app