An overview of the pathogenic mechanisms involved in severe cases of COVID-19 infection, and the proposal of salicyl-carnosine as a potential drug for its treatment

Alexander V Lopachev, Rogneda B Kazanskaya, Anastasiya V Khutorova, Tatiana N Fedorova
European Journal of Pharmacology 2020 November 5, 886: 173457
Multiple organ failure in COVID-19 patients is a serious problem which can result in a fatal outcome. Damage to organs and tissues, including general lung dysfunction, develops as a consequence of ischemia, which, in turn, is caused by thrombosis in small blood vessels and hypoxia, leading to oxidative stress and inflammation. Currently, research is underway to screen existing drugs for antioxidant, antiplatelet and anti-inflammatory properties. Having studied the available publications concerning the mechanisms of damage to tissues and organs of patients with COVID-19, as well as the available treatment strategies, we propose to investigate salicyl-carnosine as a potential drug for treating COVID-19 patients. In a recent study, we described the drug's synthesis procedure, and showed that salicyl-carnosine possesses antioxidant, anti-inflammatory, and antiplatelet effects. Therefore, it can simultaneously act on the three pathogenetic factors involved in tissue and organ damage in COVID-19. Thus, we propose to consider salicyl-carnosine as a potential drug for the treatment of patients with severe cases of COVID-19 infection.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"