JOURNAL ARTICLE

Local complement activation is associated with primary graft dysfunction after lung transplantation

Hrishikesh S Kulkarni, Kristy Ramphal, Lina Ma, Melanie Brown, Michelle L Oyster, Kaitlyn Speckhart, Tsuyoshi Takahashi, Derek E Byers, Mary K Porteous, Laurel Kalman, Ramsey R Hachem, Melanie Rushefski, Ja'Nia McPhatter, Marlene Cano, Daniel Kreisel, Masina Scavuzzo, Brigitte Mittler, Edward Cantu, Katrine Pilely, Peter Garred, Jason D Christie, John Atkinson, Andrew E Gelman, Joshua M Diamond
JCI Insight 2020 August 4
32750037

BACKGROUND: The complement system plays a key role in host defense but is activated by ischemia-reperfusion injury (IRI). Primary graft dysfunction (PGD) is a form of acute lung injury occurring predominantly due to IRI, which worsens survival after lung transplantation (LTx). Local complement activation is associated with acute lung injury, but whether it is more reflective of allograft injury compared to systemic activation remains unclear. We proposed that local complement activation would help identify those who develop PGD post-LTx. We also aimed to identify which complement activation pathways are associated with PGD.

METHODS: We performed a multicenter cohort study at the University of Pennsylvania and Washington University. Bronchoalveolar lavage (BAL) and plasma specimens were obtained from recipients within 24 h post-LTx. PGD was scored based on the consensus definition. Complement activation products and components of each arm of the complement cascade were measured using ELISA.

RESULTS: In both cohorts, sC4d and sC5b-9 levels were increased in BAL of subjects with PGD compared to those without PGD. Subjects with PGD also had higher C1q, C2, C4, and C4b, compared to subjects without PGD, suggesting classical and lectin pathway involvement. Ba levels were higher in subjects with PGD, suggesting alternative pathway activation. Among lectin pathway-specific components, MBL and FCN-3 had a moderate-to-strong correlation with the terminal complement complex in the BAL but not in the plasma.

CONCLUSION: Complement activation fragments are detected in the BAL within 24 h post-LTx. Components of all three pathways are locally increased in subjects with PGD. Our findings create a precedent for investigating complement-targeted therapeutics to mitigate PGD.

FUNDING: This research was supported by the National Institutes of Health (NIH), American Lung Association, Children's Discovery Institute, the Robert Wood Johnson Foundation, the Cystic Fibrosis Foundation, the Barnes-Jewish Hospital Foundation, The Danish Hearth Foundation], The Danish Research Foundation of Independent Research, The Svend Andersen Research Foundation and the Novo Nordisk Research Foundation.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
32750037
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"