Add like
Add dislike
Add to saved papers

Polyhydroxyalkanoate synthesis by bacteria isolated from landfill and ETP with pomegranate peels as carbon source.

Many bacteria produce polyhydroxyalkanoates (PHAs) when exposed to stressful conditions. It is a known fact that PHAs have the potential to replace petrochemical-based plastics as they are biodegradable, biocompatible, and thermoprocessible materials. The study focusses on producing PHA from microbes isolated from polluted environments and pomegranate peels were utilized as a unique carbon source. This was done to ensure reduction in the cost of the substrate that has not yet been reported as a substrate for PHA production. A comparative study was also done with Cupriavidus necator, the reference strain. Out of many bacterial strains, isolated, eight of these were found to have ability to produce PHA. Pomegranate peel was substituted as carbon source in the medium and all bacterial isolates along with reference strain were used to test their ability to produce PHA from waste. Cupriavidus necator, the reference strain, yielded 71% PHA. Bacillus halotolerans DSM8802 yielded 83% at 1:1:: C:N ratio at 72 h.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app