Add like
Add dislike
Add to saved papers

Endothelin receptor heteromerization inhibits β-arrestin function in HEK293 cells.

The endothelin receptor A (ETA) and endothelin receptor B (ETB) are G protein-coupled receptors that are co-expressed in vascular smooth muscle cells. Endothelin-1 (ET-1) activates endothelin receptors to cause microvascular vasoconstriction. Previous studies have shown that heteromerization between ETA and ETB prolongs Ca2+ transients, leading to prolongation of Gαq -dependent signaling and sustained vasoconstriction. We hypothesized that these effects are in part mediated by the resistance of ETA/ETB heteromers to β-arrestin recruitment and subsequent desensitization. Using bioluminescence resonance energy transfer 2 (BRET2 ), we found that ETB has a relatively equal affinity to form either homomers or heteromers with ETA when co-expressed in the human embryonic kidney 293 (HEK293) cells. When co-expressed, activation of ETA and ETB by ET-1 caused a heteromer-specific reduction and delay in β-arrestin-2 recruitment with a corresponding reduction and delay in ET-1-induced ETA/ETB co-internalization. Furthermore, the co-expression of ETA and ETB inhibited ET-1-induced β-arrestin-1-dependent extracellular signal-regulated kinase (ERK) phosphorylation while prolonging ET-1-induced Gαq -dependent ERK phosphorylation. ETA/ETB heteromerization mediates the long-lasting vasoconstrictor response to ET-1 by the prolongation of Gαq -dependent signaling and inhibition of β-arrestin function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app