Add like
Add dislike
Add to saved papers

Fluoride Exposure Affects Glutamine Uptake in Müller Glia Cells.

Fluoride, a pollutant present in contaminated ground water, oral care products, food, and pesticides, has deleterious effects in the structure and function of the central nervous system. Among the established neurological defects described in the exposed population, a reduced score in intelligence quotient tests in children of contaminated areas has gained attention over the past years. Maternal fluoride exposure during gestation decreases learning and memory abilities that correlate with a significant diminution of glutamate receptors expression. Since the involvement of glia cells in the maintenance and regulation of glutamatergic synapses is well-documented, in this contribution, we characterized the effect of fluoride exposure in the regulation of glia glutamine transporters. To this end, we used the Müller glia cell line, Mio-M1, and through the use of [3 H]L-Glutamine uptake experiments and a Western blot approach, we demonstrate here the functional expression of system N of glutamine transporters, SNAT3 and SNAT5, in this model of human retina radial glia cells. Furthermore, these transporters interact with the glutamate transporter excitatory amino acid transporter 1, in an activity-dependent manner. Fluoride treatment reduces glutamine uptake and cell membrane [3 H]glutamine surface binding, in good correlation with a decrease in SNAT3 and 5 protein levels. These results demonstrate that glia cells respond to the presence of fluoride reducing glutamine mobilization and by these means decreases glutamate turnover suggesting a disruption of glutamatergic transmission.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app