Procyanidins exhibits neuroprotective activities against cerebral ischemia reperfusion injury by inhibiting TLR4-NLRP3 inflammasome signal pathway

Bo Yang, Yanxia Sun, Chunchao Lv, Wei Zhang, Yizhao Chen
Psychopharmacology 2020 July 29

BACKGROUND: Ischemic stroke is a serious cardiovascular disease with high morbidity and mortality rates that affects millions of people worldwide.Currently, the only therapy with proven efficacy for acute ischemic stroke is alteplase, however, it still has many shortcomings and limitations. Therefore,we screen new compounds from traditional Chinese medicine to explore their efficacy against ischemic reperfusion injury. Procyanidins, a natural productextracted from grapes seed, which have been shown can ameliorate cerebral ischemic injury. However, the underlying mechanism is still not very clear. Theaim of this study was to investigate the effect of procyanidins on middle cerebral artery occlusion/reperfusion (MCAO/R)-mediated cerebral ischemic injuryand its underlying possible mechanisms.

METHODS: SD rats were used to evaluate the effect of procyanidins on MCAO/R induced cerebral ischemic injury in vivo. Histological analysis was used toassess neuronal apoptosis. Cell signaling was assayed by Western blot.

RESULTS: In this study, we found that procyanidins can significantly ameliorate the middle cerebral artery occlusion/reperfusion (MCAO/R)-mediatedneurological deficits, and relieved brain edema, cerebral infarction volume, histopathological damage and apoptosis in rats. In addition, procyanidins canalso markedly inhibit MCAO/R and oxygen-glucose deprivation/reoxygenation (OGD/R)-mediated activation of TLR4-p38-NF-κB-NLRP3 signalingpathway in vitro and in vivo. Moreover, procyanidins can inhibit MCAO/R and OGD/R-induced the production of inflammatory cytokines such asinterleukin-1β (IL-1β) in vitro and in vivo. Besides, treatment with TLR4 inhibitor (Cli-095) in BV2 cell also shows the same effect.

CONCLUSION: Altogether, these data suggested that procyanidins exerted a potential neuroprotective effect may by inhibit the TLR4-p38-NF-κB-NLRP3signaling pathway in the brain in MCAO/R rats.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"