Add like
Add dislike
Add to saved papers

Orexin neurons and inhibitory Agrp→orexin circuits guide spatial exploration in mice.

Hypothalamic orexin/hypocretin neurons integrate multiple sensory cues and project brain-wide to orchestrate multiple innate behaviours. Their loss impairs many context-appropriate actions, but the motivational characteristics of orexin cell activity remain unclear. We and others previously approached this question by artificial orexin stimulation, which could induce either rewarding (positive valence) and aversive (negative valence) brain activity. It is unknown to what extent such approaches replicate natural/endogenous orexin signals, which rapidly fluctuate during wakefulness. Here we took an alternative approach, focusing on observing and silencing natural orexin cell signals associated with a fundamental innate behaviour, self-paced spatial exploration. We found that mice are more likely to stay in places paired with orexin cell optosilencing. The orexin cell optosilencing also reduced avoidance of places that mice find innately aversive. Correspondingly, calcium recordings revealed that orexin cell activity rapidly reduced upon exiting the innately-aversive places. Furthermore, we provide optogenetic evidence for an inhibitory GABAergic Agrp→orexin hypothalamic neurocircuit, and find that Agrp cell suppression increases innate avoidance behaviour, consistent with orexin disinhibition. These results imply that exploration may be motivated and oriented by a need to reduce aversive orexin cell activity, and suggest a hypothalamic circuit for fine-tuning orexin signals to changing ethological priorities. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app