Putative molecular determinants mediating sensitivity or resistance towards carnosic acid tumor cell responses

Nuha Mahmoud, Mohamed E M Saeed, Yoshikazu Sugimoto, Anette Klinger, Edmond Fleischer, Thomas Efferth
Phytomedicine 2020 June 29, 77: 153271

BACKGROUND: Carnosic acid (CA) is one of the main constituents in rosemary extract. It possesses valuable pharmacological properties, including anti-oxidant, anti-inflammatory, anti-microbial and anti-cancer activities. Numerous in vitro and in vivo studies investigated the anticancer profile of CA and emphasized its potentiality for cancer treatment. Nevertheless, the role of multidrug-resistance (MDR) related mechanisms for CA's anticancer effect is not yet known.

PURPOSE: We investigated the cytotoxicity of CA against known mechanisms of anticancer drug resistance (P-gp, ABCB5, BCRP, EGFR and p53) and determined novel putative molecular factors associated with cellular response towards CA.

STUDY DESIGN: Cytotoxicity assays, bioinformatic analysis, flow cytometry and western blotting were performed to identify the mode of action of CA towards cancer cells.

METHODS: The cytotoxicity to CA was assessed using the resazurin assays in cell lines expressing the mentioned resistance mechanisms. A pharmacogenomic characterization of the NCI 60 cell line panel was applied via COMPARE, hierarchical cluster and network analyses. Flow cytometry was used to detect cellular mode of death and ROS generation. Changes in proteins-related to apoptosis were determined by Western blotting.

RESULTS: Cell lines expressing ABC transporters (P-gp, BCRP or ABCB5), mutant EGFR or p53 were not cross-resistant to CA compared to their parental counterparts. By pharmacogenomic approaches, we identified genes that belong to different functional groups (e.g. signal transduction, regulation of cytoskeleton and developmental regulatory system). These genes were predicted as molecular determinants that mediate CA tumor cellular responses. The top affected biofunctions included cellular development, cellular proliferation and cellular death and survival. The effect of CA-mediated apoptosis in leukemia cells, which were recognized as the most sensitive tumor type, was confirmed via flow cytometry and western blot analysis.

CONCLUSION: CA may provide a novel treatment option to target refractory tumors and to effectively cooperate with established chemotherapy. Using pharmacogenomic approaches and network pharmacology, the relationship between cancer complexity and multi-target potentials of CA was analyzed and many putative molecular determinants were identified. They could serve as novel targets for CA and further studies are needed to translate the possible implications to clinical cancer treatment.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"