Add like
Add dislike
Add to saved papers

Exposure to copper oxide nanoparticles triggers oxidative stress and endoplasmic reticulum (ER)-stress induced toxicology and apoptosis in male rat liver and BRL-3A cell.

Copper oxide nanoparticles (Nano-CuO) toxicity has been researched widely in recent years. However, the relationship between oxidative stress and ER-stress and the possible mechanisms induced by Nano-CuO have been rarely studied. Here, the mechanism of hepatotoxicity and apoptosis through oxidative stress and ER-stress induced by Nano-CuO was investigated in vivo and in vitro. In in vivo experiments, male Wistar rats were intranasally instilled 10 μg Nano-CuO/g body weight daily for 60 days, which caused liver function impairment, oxidative stress, inflammatory response, histopathological and ultrastructural damage, ER-stress and apoptosis in liver tissue. in vitro experiments on rat hepatocytes BRL-3A cells showed that exposure to Nano-CuO for 24 h resulted in excess production of reactive oxygen species leading to decrease in mitochondria membrane potential causing cell death by inducing apoptosis. However, administration of n-acetyl cysteine decreased the apoptosis in Nano-cuo treated group. The in vivo and in vitro experiments confirmed that oxidative stress triggered ER-stress pathway, leading to the opening of apoptosis pathways of CHOP, JNK, and Caspase-12. In summary, treatment of Nano Cuo triggered oxidative stress by ROS, which in turn resulted in activation of ER stress pathways causing cell death in liver tissue and BRL-3A cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app