Add like
Add dislike
Add to saved papers

Elucidation of anti-HIV mechanism of sulfated cellobiose-polylysine dendrimers.

Three new spherical sulfated cellobiose-polylysine dendrimers of increasing generations bearing negatively charged sulfate groups were prepared by sulfating the corresponding cellobiose-polylysine dendrimers. The first, second, and third-generation derivatives exhibited potent anti-HIV activity with EC50 values of 3.7, 0.6, and 1.5 μg/mL, respectively, in constant to sulfated oligosaccharides with low anti-HIV activity, while the second-generation sulfated dendrimer was the most active. Surface plasmon resonance measurements with poly-l-lysine bearing positively charged amino acids as a model of the HIV surface glycoprotein gp120, indicated that the second-generation dendrimer had the lowest dissociation constant (KD  = 1.86 × 10-12  M). Both the particle size and ζ potential increased in the presence of poly-l-lysine. It was proven that the moderate distance between the terminal sulfated cellobiose units in the second-generation dendrimer favored the high anti-HIV activity, owing to the electrostatic interactions developed due to the cluster effect.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app