Add like
Add dislike
Add to saved papers

Differential assessment of skeletal, alveolar, and dental components induced by microimplant-supported midfacial skeletal expander (MSE), utilizing novel angular measurements from the fulcrum.

BACKGROUND: In order to assess skeletal expansion, alveolar bone bending, and dental tipping after maxillary expansion, linear and angular measurements have been performed utilizing different craniofacial references. Since the expansion with midfacial skeletal expander (MSE) is archial in nature, the aim of this paper is to quantify the differential components of MSE expansion by calculating the fulcrum locations and applying a novel angular measurement system.

METHODS: Thirty-nine subjects with a mean age of 18.2 ± 4.2 years were treated with MSE. Pre- and post-expansion CBCT records were superimposed and compared. The rotational fulcrum of the zygomaticomaxillary complex was identified by localizing the interfrontal distance and modified interfrontal distance. Based on the fulcrum, a novel angular measurement method is presented and compared with a conventional linear method to assess changes of the zygomaticomaxillary complex, dentoalveolar bone, and maxillary first molars.

RESULTS: From 39 patients, 20 subjects have the rotational fulcrum of the zygomaticomaxillary complex at the most distant points of the interfrontal distance (101.6 ± 4.7 mm) and 19 subjects at the most distant points of the modified interfrontal distance (98.9 ± 5.7 mm). Linear measurements accounted for 60.16% and 56.83% of skeletal expansion, 16.15% and 16.55% of alveolar bone bending, and 23.69% and 26.62% of dental tipping for right and left side. Angular measurements showed 96.58% and 95.44% of skeletal expansion, 0.34% and 0.33% alveolar bone bending, and 3.08% and 4.23% of dental tipping for the right and left sides. The frontozygomatic, frontoalveolar, and frontodental angles were not significant different (P > 0.05).

CONCLUSIONS: In the coronal plane, the center of rotation for the zygomaticomaxillary complex was located at the most external and inferior point of the zygomatic process of the frontal bone or slightly above and parallel to the interfrontal distance. Due to the rotational displacement of the zygomaticomaxillary complex, angular measurements should be a preferred method for assessing the expansion effects, instead of the traditional linear measurement method.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app