Add like
Add dislike
Add to saved papers

Diagnosis of Bloom Syndrome in a Patient with Short Stature, Recurrence of Malignant Lymphoma, and Consanguineous Origin.

Bloom syndrome is an autosomal recessive disorder characterized by prenatal and postnatal growth deficiency, photosensitive skin changes, immune deficiency, insulin resistance, and a greatly increased risk of early-onset cancer and development of multiple malignancies. Loss-of-function variants of the BLM gene, which codes for a RecQ helicase, cause Bloom syndrome. We report a consanguineous family, with 2 siblings showing clinical signs of suspected chromosome breakage disorder. One of them developed recurrent malignant lymphoma during lifetime. We performed next-generation sequencing analysis, focusing on cancer predisposition syndromes. We identified a homozygous pathogenic nonsense variant c.1642C>T (p.Gln548*) in the BLM gene in the proband, associated with Bloom syndrome. Sanger sequencing validated the presence of a homozygous pathogenic variant in the proband and also in the brother with short stature. In this article, we will focus on the clinical presentation of the syndrome in this particular family as well as the characteristics of malignancies found in the proband.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app