Add like
Add dislike
Add to saved papers

Differential Ventilation Using Flow Control Valves as a Potential Bridge to Full Ventilatory Support during the COVID-19 Crisis.

Anesthesiology 2020 October 2
BACKGROUND: During the COVID-19 pandemic, ventilator sharing was suggested to increase availability of mechanical ventilation. The safety and feasibility of ventilator sharing is unknown.

METHODS: A single ventilator in pressure control mode was used with flow control valves to simultaneously ventilate two patients with different lung compliances. The system was first evaluated using high-fidelity human patient simulator mannequins and then tested for 1 h in two pairs of COVID-19 patients with acute respiratory failure. Patients were matched on positive end-expiratory pressure, fractional inspired oxygen tension, and respiratory rate. Tidal volume and peak airway pressure (PMAX) were recorded from each patient using separate independent spirometers and arterial blood gas samples drawn at 0, 30, and 60 min. The authors assessed acid-base status, oxygenation, tidal volume, and PMAX for each patient. Stability was assessed by calculating the coefficient of variation.

RESULTS: The valves performed as expected in simulation, providing a stable tidal volume of 400 ml each to two mannequins with compliance ratios varying from 20:20 to 20:90 ml/cm H2O. The system was then tested in two pairs of patients. Pair 1 was a 49-yr-old woman, ideal body weight 46 kg, and a 55-yr-old man, ideal body weight 64 kg, with lung compliance 27 ml/cm H2O versus 35 ml/cm H2O. The coefficient of variation for tidal volume was 0.2 to 1.7%, and for PMAX 0 to 1.1%. Pair 2 was a 32-yr-old man, ideal body weight 62 kg, and a 56-yr-old woman, ideal body weight 46 kg, with lung compliance 12 ml/cm H2O versus 21 ml/cm H2O. The coefficient of variation for tidal volume was 0.4 to 5.6%, and for PMAX 0 to 2.1%.

CONCLUSIONS: Differential ventilation using a single ventilator is feasible. Flow control valves enable delivery of stable tidal volume and PMAX similar to those provided by individual ventilators.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app