Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Optic Disc Classification by Deep Learning versus Expert Neuro-Ophthalmologists.

Annals of Neurology 2020 October
OBJECTIVE: To compare the diagnostic performance of an artificial intelligence deep learning system with that of expert neuro-ophthalmologists in classifying optic disc appearance.

METHODS: The deep learning system was previously trained and validated on 14,341 ocular fundus photographs from 19 international centers. The performance of the system was evaluated on 800 new fundus photographs (400 normal optic discs, 201 papilledema [disc edema from elevated intracranial pressure], 199 other optic disc abnormalities) and compared with that of 2 expert neuro-ophthalmologists who independently reviewed the same randomly presented images without clinical information. Area under the receiver operating characteristic curve, accuracy, sensitivity, and specificity were calculated.

RESULTS: The system correctly classified 678 of 800 (84.7%) photographs, compared with 675 of 800 (84.4%) for Expert 1 and 641 of 800 (80.1%) for Expert 2. The system yielded areas under the receiver operating characteristic curve of 0.97 (95% confidence interval [CI] = 0.96-0.98), 0.96 (95% CI = 0.94-0.97), and 0.89 (95% CI = 0.87-0.92) for the detection of normal discs, papilledema, and other disc abnormalities, respectively. The accuracy, sensitivity, and specificity of the system's classification of optic discs were similar to or better than the 2 experts. Intergrader agreement at the eye level was 0.71 (95% CI = 0.67-0.76) between Expert 1 and Expert 2, 0.72 (95% CI = 0.68-0.76) between the system and Expert 1, and 0.65 (95% CI = 0.61-0.70) between the system and Expert 2.

INTERPRETATION: The performance of this deep learning system at classifying optic disc abnormalities was at least as good as 2 expert neuro-ophthalmologists. Future prospective studies are needed to validate this system as a diagnostic aid in relevant clinical settings. ANN NEUROL 2020;88:785-795.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app