Add like
Add dislike
Add to saved papers

Biological properties of almond proteins produced by aqueous and enzyme-assisted aqueous extraction processes from almond cake.

Scientific Reports 2020 July 3
The almond cake is a protein-rich residue generated by the mechanical expression of the almond oil. The effects of the aqueous (AEP) and enzyme-assisted aqueous extraction processes (EAEP) on the biological properties of the almond cake protein were evaluated. Total phenolic content (TPC), antioxidant capacity, inhibitory effects against crucial enzymes related to metabolic syndrome, antimicrobial potential, and in vitro protein digestibility profile were assessed. EAEP provided the best results for antioxidant capacity by both ORAC (397.2 µmol TE per g) and ABTS (650.5 µmol TE per g) methods and also showed a high (~ 98%) potential for α-glucosidase inhibition. The AEP resulted in protein extracts with the highest lipase inhibition (~ 70%) in a dose-dependent way. Enzymatic kinetic analyses revealed that EAEP generated uncompetitive inhibitors against α-glucosidase, while EAEP, AEP, and HEX-AEP (used as control) generated the same kind of inhibitors against lipase. No protein extract was effective against any of the bacteria strains tested at antimicrobial assays. An in silico theoretical hydrolysis of amandin subunits corroborated with the results found for antioxidant capacity, enzyme inhibitory experiments, and antimicrobial activity. Digestibility results indicated that the digestive proteases used were efficient in hydrolyzing almond proteins, regardless of the extraction applied and that HEX-AEP presented the highest digestibility (85%). In summary, EAEP and AEP skim proteins have the potential to be used as a nutraceutical ingredient. The biological properties observed in these extracts could help mitigate the development of metabolic syndrome where EAEP and AEP skim proteins could be potentially used as a prophylactic therapy for diabetes and obesity, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app