Add like
Add dislike
Add to saved papers

Oxidative damage mediates the association between polycyclic aromatic hydrocarbon exposure and lung function.

BACKGROUND: Exposure to polycyclic aromatic hydrocarbons (PAHs) is related to decreased lung function. However, whether oxidative damage is involved in this relationship remains unclear. This study was aimed to explore the potential mediating role of oxidative DNA or lipid damage in the association between PAH exposure and lung function.

METHODS: The urinary levels of monohydroxy polycyclic aromatic hydrocarbon metabolites (OH-PAHs) and lung function parameters were measured among 3367 participants from the baseline of the Wuhan-Zhuhai cohort. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 8-isoprostane (8-iso-PGF2α) were determined to evaluate the individuals' oxidative DNA and lipid damage degrees, respectively. Linear mixed models were used to investigate the associations of urinary OH-PAHs, 8-OHdG and 8-iso-PGF2α with lung function parameters. Mediation analysis was further conducted to assess the potential role of oxidative damage in the association between urinary OH-PAHs and lung function.

RESULTS: Each one-percentage increase in the sum of urinary OH-PAHs, high-molecular-weight or low-molecular-weight OH-PAHs (ƩOH-PAHs, ƩHMW OH-PAH or ƩLMW OH-PAHs, respectively) was associated with a 0.2152-, 0.2076- or 0.1985- ml decrease in FEV1 , and a 0.1891-, 0.2195- or 0.1634- ml decrease in FVC, respectively. Additionally, significantly positive dose-response relationships of ƩOH-PAHs, ƩHMW OH-PAH and ƩLMW OH-PAHs with urinary 8-OHdG or 8-iso-PGF2α, as well as an inverse dose-response relationship between urinary 8-OHdG and FVC, were observed (all P for trend < 0.05). Mediation analysis indicated that urinary 8-OHdG mediated 14.22% of the association between ƩHMW OH-PAH and FVC.

CONCLUSION: Higher levels of oxidative DNA damage might be involved in the decreased levels of FVC caused by high-molecular-weight PAH exposure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app