JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Reduced Calcium Sensing Receptor (CaSR) Expression Is Epigenetically Deregulated in Parathyroid Adenomas.

AIM: Reduced calcium sensing receptor (CaSR) expression has been implicated in parathyroid tumorigenesis, but the underlying mechanism remains elusive. Accordingly, we aimed to explore the epigenetic changes (DNA methylation and histone modifications) involved in CaSR regulation in sporadic parathyroid adenomas and correlate epigenetic state with disease indices.

EXPERIMENTAL DESIGN: Forty sporadic parathyroid adenomas and 10 control parathyroid tissues were studied. Real-time quantitative PCR (qPCR) for mRNA and immunohistochemistry for protein expression of CaSR were performed. The methylation status of the CaSR promoter 2 was determined by bisulphite sequencing analysis of sodium bisulphite-converted DNA. To determine the role of histone modifications in the CaSR regulation, chromatin immunoprecipitation-qPCR assay was performed.

RESULTS: Real-time qPCR revealed reduced CaSR mRNA expression with a fold reduction of 0.12 (P < 0.0001) in parathyroid adenomas. Immunohistochemistry revealed reduced protein expression of CaSR in 90% (36/40) of adenomas. The promoter 2 region of CaSR displayed significant hypermethylation in 45% (18/40) of the adenomas compared with the controls (6.7%; 1 of 10) (P < 0.002). Bisulphite sequencing analysis revealed maximum methylated CpG at glial cell missing 2 binding site on the CaSR promoter 2 compared to other CpG sites. The methylation status of CaSR correlated directly with plasma intact parathyroid hormone levels in patients with parathyroid adenoma. With chromatin immunoprecipitation-qPCR analysis, H3K9me3 levels showed increased enrichment by 10-fold in adenomas and correlated with CaSR-mRNA expression (r = 0.61; P < 0.003). Treatment with 5-aza-2'deoxycytidine restored the expression of CaSR in a parathyroid cell line.

CONCLUSION: Our data suggest that hypermethylation and increased H3K9me3 of the CaSR promoter 2 are involved in silencing CaSR expression in sporadic parathyroid adenoma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app