Add like
Add dislike
Add to saved papers

Automated stroke lesion segmentation in non-contrast CT scans using dense multi-path contextual generative adversarial network.

BACKGROUND AND OBJECTIVE: Stroke lesion volume is a key radiologic measurement in assessing prognosis of acute ischemic stroke (AIS) patients. The aim of this paper is to develop an automated segmentation method for accurately segmenting follow-up ischemic and hemorrhagic lesion from multislice non-contrast CT (NCCT) volumes of AIS patients.

METHODS: This paper proposes a 2D dense multi-path contextual generative adversarial network (MPC-GAN) where a dense multi-path 2D U-Net is utilized as the generator and a discriminator network is applied to regularize the generator. Contextual information (i.e., bilateral intensity difference, distance map and lesion location probability) are input into the generator and discriminator. The proposed method is validated separately on follow-up NCCT volumes of 60 patients with ischemic infarcts and NCCT volumes of 70 patients with hemorrhages.

RESULTS: Quantitative results demonstrated that the proposed MPC-GAN method obtained a Dice coefficient (DC) of 70.6% for ischemic infarct segmentation and a DC of 76.5% for hemorrhage segmentation compared with manual segmented lesions, outperforming several benchmark methods. Additional volumetric analyses demonstrated that the MPC-GAN segmented lesion volume correlated well with manual measurements (Pearson correlation coefficients were 0.926 and 0.927 for ischemic infarcts and hemorrhages, respectively).

CONCLUSIONS: The proposed MPC-GAN method can accurately segment ischemic infarcts and hemorrhages from NCCT volumes of AIS patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app