Add like
Add dislike
Add to saved papers

Rapamycin-PLGA microparticles prevent senescence, sustain cartilage matrix production under stress and exhibit prolonged retention in mouse joints.

Biomaterials Science 2020 August 8
Osteoarthritis (OA) is a joint disease characterized by progressive damage of articular cartilage and the adjoining subchondral bone. Chondrocytes, the primary cells of the cartilage, have limited regenerative capacity and when they undergo stress due to trauma or with aging, they senesce or become apoptotic. Rapamycin, a potent immunomodulator, has shown promise in OA treatment. It activates autophagy and is known to prevent senescence. However, its clinical translation for OA is hampered due to systemic toxicity as high and frequent doses are required. Here, we have fabricated rapamycin encapsulated poly(lactic-co-glycolic acid) (PLGA) based carriers that induced autophagy and prevented cellular senescence in human chondrocytes. The microparticle (MP) delivery system showed sustained release of the drug for several weeks. Rapamycin microparticles protected in vitro cartilage mimics (micromass cultures) from degradation, allowing sustained production of sGAG, and demonstrated a prolonged senescence preventive effect under oxidative and genomic stress conditions. These microparticles also exhibited a residence time of ∼30 days after intra-articular injections in murine knee joints. Such particulate systems are promising candidates for intra-articular delivery of rapamycin for the treatment of osteoarthritis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app