Add like
Add dislike
Add to saved papers

Cooling and entangling ultracold atoms in optical lattices.

Science 2020 June 19
Scalable, coherent many-body systems can enable the realization of previously unexplored quantum phases and have a potential to exponentially speed up information processing. Here we report the cooling of a quantum simulator with ten thousand atoms and mass production of high-fidelity entangled pairs. In a two-dimensional plane, we cool Mott-insulator samples by immersing them into removable superfluid reservoirs, achieving an entropy per particle of [Formula: see text] The atoms are then rearranged into a two-dimensional lattice free of defects. We further demonstrate a two-qubit gate with a fidelity of 0.993(1) for entangling 1250 atom pairs. Our results offer a setting for exploring low-energy many-body phases and could enable the creation of large-scale entanglement.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app