Add like
Add dislike
Add to saved papers

Multiple assays in a real-time RT-PCR SARS-CoV-2 panel can mitigate the risk of loss of sensitivity by new genomic variants during the COVID-19 outbreak.

OBJECTIVES: In this study, five SARS-CoV-2 PCR assay panels were evaluated against the accumulated genetic variability of the virus to assess the effect on sensitivity of the individual assays.

DESIGN OR METHODS: As of week 21, 2020, the complete set of available SARS-CoV-2 genomes from GISAID and GenBank databases were used in this study. SARS-CoV-2 primer sequences from publicly available panels (WHO, CDC, NMDC, and HKU) and QIAstat-Dx were included in the alignment, and accumulated genetic variability affecting any oligonucleotide annealing was annotated.

RESULTS: A total of 11,627 (34.38%) genomes included single mutations affecting annealing of any PCR assay. Variations in 8,773 (25.94%) genomes were considered as high risk, whereas additional 2,854 (8.43%) genomes presented low frequent single mutations and were predicted to yield no impact on sensitivity. In case of the QIAstat-Dx SARS-CoV-2 Panel, 99.11% of the genomes matched with a 100% coverage all oligonucleotides, and critical variations were tested in vitro corroborating no loss of sensitivity.

CONCLUSIONS: This analysis stresses the importance of targeting more than one region in the viral genome for SARS-CoV-2 detection to mitigate the risk of loss of sensitivity due to the unknown mutation rate during this SARS-CoV-2 outbreak.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app