Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

N-glycosylated IgG in patients with kidney transplants increases calcium/calmodulin kinase IV in podocytes and causes injury.

Transplant glomerulopathy (TG) is a major cause of late allograft loss. Increased urine podocin/creatinine ratio in TG signifies accelerated podocyte loss. The mechanisms that lead to podocyte injury in TG remain unclear. We report that IgG from kidney transplant recipients with TG, but not from those without TG, cause a reduction in the expression of nephrin, significant podocyte actin cytoskeleton, and motility changes. These changes are preceded by increased expression of calcium/calmodulin kinase IV (CAMK4). Mechanistically, we found that CAMK4 phosphorylates GSK3β (glycogen synthase kinase 3 beta), activates the Wnt pathway and stabilizes the nephrin transcriptional repressor SNAIL. Silencing neonatal Fc Receptor (FcRn) or CAMK4 prevented the podocyte-damaging effects of IgG from patients with TG. Furthermore, we show that removal of N-linked glycosyl residues from these IgG did not interfere with its entry into the podocytes but eliminated its ability to upregulate CAMK4 and cause podocyte injury. The translational value of these findings is signified by the fact that CAMK4 is increased in podocytes of patients with TG but not in those without TG despite other forms of renal dysfunction. Our results offer novel considerations to limit podocyte injury in patients with kidney transplants, which may lead to eventual glomerular destabilization and transplant glomerulopathy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app